(针对2018年10月第1版第1次印刷)
第13页第3-4行：“并且读写头停在……读写头停在0上）”改为“并且读写头停在\(y\) 串的 最后一个 1 （如果有的话，不然 \(y = 0\) ，停在隔开原 \(x + 1\) 串与 \(y + 1\) 串的 0 ） 的右侧。”
(针对2018年10月第1版第1次印刷)
第13页第3-4行：“并且读写头停在……读写头停在0上）”改为“并且读写头停在\(y\) 串的 最后一个 1 （如果有的话，不然 \(y = 0\) ，停在隔开原 \(x + 1\) 串与 \(y + 1\) 串的 0 ） 的右侧。”
Online Lecture: Lecture 01 Slides
Lecture: H5116, F 8:00-9:40
Section: HGW2403, F(e) 18:30-20:10
Textbook: https://doi.org/10.1017/CBO9781107050884
Lecture: H5312, W 18:30-20:10
Section: H5312, W 20:20-21:05
This course is based on Shore‘s lecture note. Here is some solutions for the exercises.
Lecture: HGW2403, T 18:30-21
Section: HGW2403, R 18:30-20
You can choose one of the following topics.
Kunen’s set theory (2013) Exercise I.16.6 – I.16.10, I.16.17.
Kunen’s set theory (2013) Exercise II.4.6, 4.8.
Jech’s set theory (2002) Exercise 7.1, 7.3 – 7.5, 7.13, 7.16, 7.18 – 7.20, 7.22 – 7.33.
Jech’s set theory (2002) Exercise 14.12.
Such \(\mathbb{Q}\) is unique up to isomorphism. We call it the separative quotient of \(\mathbb{P}\).
Jech’s set theory (2002) Exercise 14.1, 14.9, 14.14, 14.16. Lemma 14.13.
Lecture: HGX205, M 18:30-21
Section: HGW2403, F 18:30-20
And all exercises for Chapter 2 (see page 23, open minds)
And exercises for Chapter 3 (see page 35, open minds): 1 (a) (b), 2.
And exercises for Chapter 4 (see page 47, open minds): 1 – 3.
And exercises for Chapter 5 (see page 60, open minds): 1 – 5.
Exercises for Chapter 6 (see page 69, open minds): 1 – 3.
Exercises for Chapter 7 (see page 88, open minds): 1 – 6. For exercise 2 (a) – (d), replace the existential modality E with the difference modality D. In the clause (b) of exercise 4, “completeness” should be “correctness”.
Exercises for Chapter 8 (see page 99, open minds): 1, 2, 4 – 6.
Exercises for Chapter 9 (see page 99, open minds).
Exercises for Chapter 10 and 11 (see page 117 and 125, open minds).
欢迎在评论区提交有关本书的勘误与修改意见。 Continue reading “《数理逻辑：证明及其限度》勘误”
http://logic.fudan.edu.cn/doc/LaPamend.pdf
欢迎在评论区提交有关本书的勘误与修改意见。
第133-134页。“ZFC 的可数传递的模型”文本框中关于 \(T_\alpha\)（\(\omega\leq\alpha<\omega_1^\mathrm{CK}\)）的定义不是良定义的。